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Abstract
Multiresolutional S3-search generated a need to properly
tessellate spaces and efficiently searching them. Drexel
University has introduced MR-methodology such as uniform
and non-uniform space tessellation and efficient algorithms
of searching within ressellated state space. This methodology
for solving planning and control problems is successfully
applied in autonomous vehicles, industrial robots and power
stations. This paper focuses on computational phenomena
characteristic for randomized tessellation and affecting the
results of S3-search.
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Introduction
To “tessellate" to form or arrange

elementary units of space in a mosaic fashion so
that all selected space be covered. Tessellation of
a closed polytope means decomposing it into
non-overlapping sets of tessellata (granules,
boxes or tiles). These subsets form an
equivalence class in which all the points within a
tile are identified with a single label. The natural
interpretation is that each of the labels represents
all points of a single tessellatum while its
generalized location is in the center of the
tessellatum. There are three basic types of
tessellations:

1. Regular Tessellation
2. Semi Regular Tessellation
3. Irregular Tessellation

Regular Tessellation:  This means a tessellation
made up of congruent regular polygons. Regular
means that the sides of the polygon are all the
same length. Congruent means that the polygons
that you put together are all the same size and
shape. Only three regular polygons tessellate in
the Euclidean plane: triangles, squares or
hexagons. Regular tessellation are shown in
figure 1.a.
Semi-Regular Tessellation: A variety of regular
polygons is used to make semi-regular
tessellations . Examples of this type of
tessellation are shown in Figure 1.b. This
tessellation has two properties:

1. It is formed by regular polygons.

2. The arrangement of polygons at every
vertex point is identical.

Irregular Tessellation: In this case points are
sprinkled randomly. This randomity is equivalent
to the uncertainties o sampling the state space.
There are quite a few methods of generating
random tessellations.

Generating randomized tessellation.
S3-search requires generating random

points in the state space [1]. The law of
distribution that characterizes coordinates of the
random points describes the uncertainty of the
state space taken into consideration. There are
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Figure 1:  Different types of tessellation

many methods of generating randomized graphs
(Irregular tessellation).  A few of them are listed
below.
1. Random generation of grid-points
positions: Random points in the state space can
be generated by a standard random number
generator. A deficiency of this method is in the
fact that “random” points may not be evenly
distributed. In other words, the density of the
particular set of points in all regions of the state



space may not be the same. This may occur
because of dealing with imperfect random
number generators. However, this shortcoming
can be dealt with by multiple running the
algorithm that is being tested.

2. Randomizing by “shaking the grid”: In
this method we use a grid to generate the basic
set of points. The grid points are considered to be
at the intersection of a row and a column. Then
we introduce a random shift to these coordinates
of points: shake the grid. Thus, the points move
away from the initial positions into random
positions.

             

The shift is assigned in the form of a
fraction (percentage) of the interval between the
rows and the columns (∆). Figure 2 explains the

generation of the randomized tessellation using
the grid method. The advantage of this method is
that it ensures that the overall density of the
points is the same in all the regions of the graph.
But this true only if the shift in the points is less
than or equal to 50% (.5∆).  If the shift exceeds
50% the distribution gets similar to the one
observed in the random number generation
method. This comparison is shown in Figure 3.
3.    Concentric circle non-uniform grid
generation:  This method is similar to the grid
generation method.  In the latter we used straight
lines to generate the grid. But in this case we use
concentric circles instead of the rows and the
radius replaces columns. The specifics of this
method is that there are many points generated
close to the center of the circle and as we move
away from the center the density of the points
decrease. This method is useful in the cases
when a variable resolution is attempted within
one level of representation like in page 4 of [2],
where the fine motion planning is obtained for a
few steps in the vicinity and the further we move
from the acting robot the lower the resolution is.
Certainly, any law of gradual decrease of
resolution can be assigned. In Figure 4: we
illustrate how the random points are generated by
this method.

Randomized Grid Generation
The algorithm of randomized grid

generation is described by this pseudocode:

1. Start.
2. Obtain the parameter of the grid

a. Total number of points
b. Total number of rows
c. Total number of columns
d. Check if the product of the rows and the

columns is equal to the total number of
points. It true then continue else go to
step 2.a

e. Obtain the starting coordinate of the
row and the column.

f. Obtain the delta for the row. Check if
the obtained value is valid.
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Figure 2: Shaken grid method of
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Figure 3: Comparison of the various
methods for generating the grid
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g. Obtain the delta for the column. Check
if the entered value is valid

h. Obtain the shift percentage of the
points.

i. Calculate the max possible shift of a
point with respect to the row and the
column delta.

3. Repeat the following for total number of
rows (columns).

 i. Assign a random sign (+ or -)
 ii. Obtain a random value with the

max possible shifts for each of the
row and column.

 iii. Add this shift to the corresponding
row and column coordinate.

4. Store this information
5. Stop.

Randomized graph using different
distributions.

In the above pseudocode, we assign the
“sign” that a random generator uses to obtain the
random shift within the maximum limits.
Different distributions can be used to obtain this
random value. Uniform distribution is the
distribution that we have used in our
experiments. In uniform distribution the random
point obtained has equal probability of falling
anywhere in the space specified for it. While if
we use the Guassian Distribution then the points
have a greater probability of falling close to the
center of the shift compared to the probability of
falling at the edge of the maximum shifts.

Searching on the Grid Problem: Why
Bias?

This is a useful advantage and the
disadvantage of a grid that from any node in the
grid to another there are many equal (or
approximately equal) paths. This can be seen in
Figure 5.

In the above Figure, it is clear that there are 3
possible equivalent paths from node A to node
B. On using the new algorithm on the grid, it
tends to give the full line path (in Figure 5) as
the optimal solution. It turns out to be that if the
starting node is on the left hand side and the
destination point is on the right hand side and
there are many possible paths from the starting to
the destination then the left most path will be
given as the optimal solution. Similarly if the
starting point in the right hand side and the
destination on the left hand side, then the right
most path among the possible paths will be given
as the optimal one. For a single run of the min-
cost search see Figure 6.

The concept of Vicinity
Unlike the standard Dijkstra search

algorithm, our search in the randomized grid
does not have any graph prepared for exploration
in advance for exploration. The recommended
algorithms builds the graph as it explores the
graph. The concept of a vicinity is introduced.
The present “standpoint” is being surrounded by
a “vicinity” that can have a “radius” of 1, 2, (or
more) of average edge length (v1, v2, v3). Edges
are constructed to all nodes in the vicinity. After
the current “cheapest” node is found, it becomes
the standpoint node and is being surrounded by
its vicinity. Certainly, the solutions of 3-vicinity
lead to “straighter” trajectories, but it takes more
complexity to compute them.

Superimposing Multiple Search Results
A better way of finding the generalized

result of searching in the randomized graph is
running search in multiple random grids and
superimposing their solution. In Figure 6, we
show the results of such superimposing of
several min-cost paths for a dynamic system of
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Figure 5: Three possible paths from node A to
node B in the grid



the first order (the acceleration and deceleration
of a constant mass on a surface with friction.
One can see that acceleration is not as rapid as
deceleration. (This test further develops our prior
results from [3]). It is important that in a
multiplicity of superimposed random search
results all stochastic components compensate for
each other, and the envelope (the stripe for the
subsequent higher resolution search) has smooth
edges (as seen in Figure 9).

Figure 7: A single search performed on a grid with a shift of
30% and vicinity 1.

Solution to the grid problem
To avoid getting the extreme paths as

the solutions we have to make sure that there
aren’t any “equidistant paths” from the starting
to the destination point. This can be achieved by
increasing the shift in the points there by
eliminating the distorting effect of the grid.

(a) (b)
Figure 8. (a) Super imposed image of 30 runs of 30% shift

(b) Super imposed image of 30 runs of 60% shift. The above
runs were for performing a search of optimal path from the

(0,0) location in the grid to (29,7) location

A comparison of the search with shift of 30%
and 60% is shown in Figure 8 as the results of
searching optimal path from the (0,0) location in
the grid to (29,7) location It is clear from the
Figure 8, the phenomenon of Bias is due to the
grid effect. It was found that 50% shift is the
most beneficial for removing the distorting grid
effect.  In other words, by shifting from a regular
tessellation to a irregular tessellation we can
reduce the bias problem substantially. Large bias
is shown in Figure 6, a reduced case in Figure 8.

Figure 9. Envelope (“stripe”) for the subsequent search of
higher resolution obtained by superimposing multiple results

of randomized searching.

Using randomization of the grid for
virtual modeling the uncertainties

While using the tessellation for any
particular purpose, 3 components affect actively
the results of the execution.

1. Grid Law:  The law is determined by the
technique that we use to generate the tessellation.

2. Grid Density: This is computed as a
ratio: the quantity of points located in the state
space over its volume (area).

3. Shift of the randomization:  This is the
Results of “shaking” the grid (percentage)
introduced to generate the effect of
randomization.

Among these 3 components, the grid
density and the shift of randomization create an
intrinsic error of the path. When solving the
same problem analytically, the solution (path)
obtained has a stochastic component in it, which
is perceived as a noise, a part of the uncertainties
of the sources. This stochastic component is
equivalent to the intrinsic error. Hence, if we
know the sources of the uncertainty in the system
(e. g. in the form of the values of Expectation



and the Variance of this uncertainty) we can
assign the grid density and the shift and the
results of randomization will be equivalent to
using the models of stochastic components, since
we obtain the same Expectation and the Variance
as the model would produce. In other words,
instead of modeling the uncertainties we are can
build the tessellation in such a manner that is
produces this statistical truth.

Randomization in the Case of Multiple
Traversabilities Segments

It is instructive to consider a case of
finding the minimum cost path for a case of
having multiple traversabilities of the state space.
In Figure 10, a space segmented in multiple
zones of traversbility is shown and the results of
v1-searching for the case when traversability
gradually reduces clockwise.

Figure 10. A single run of the S3-search algorithm and a
randomized grid

A question that should be answered: how to
determine the width of a stripe (envelope) within
which the search should be executed at a higher
level of resolution. We exercised computing the
boundaries for a stripe with 3σ width on the right
and on the left around the average approximation
of the path trajectory. This is a pretty
cumbersome computation that includes the
following stages: a) finding the approximation of
the single path known, b) assuming that this
approximation can be considered “an average
recommended trajectory,” c) computing the
value of 3σ from the information of uncertainty,
d) constructing piecewise boundaries around the
average trajectory.

The following technique was tested and
seems to be more practical. The search is being
run many times, and the results of this multiple
search are collected together and are considered
a “stripe” (envelope).

In Figure 11, the results of this
experiment are brought together for the case
shown in Figure 10.

Figure 11. The cumulative results of conducting multiple
search for the case shown in Figure 10.

One can see that a stripe emerges that
demonstrate the statistical representation of the
zone that is preferential for the subsequent higher
resolution searching.

Interesting observations can be made: a)
the stripe is narrowing as the traversability of
tthe path is reducing, b) the stripe is narrowing in
the areas of leaving IP and reaching the GP, c) in
some areas the distribution gravitates to the
unimodal law (like in Figure 8b); however in
many areas the distribution is similar to the
uniform one
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